Yook Yook Girls

มูเดิล ( Moodle ย่อมาจาก Modular Object-Oriented Dynamic Learning Environment) เป็นซอฟต์แวร์เสรีเพื่อจัดการสภาพแวดล้อมการศึกษาผ่านสื่ออิเล็กทรอนิกส์ (อาจเรียกว่า Learning Management System หรือ Virtual Learning Environment; VLE) ในเดือนตุลาคม พ.ศ. 2555 มีฐานผู้ใช้ประกอบไปด้วย 70,793 เว็บไซต์ที่ลงทะเบียนและตรวจสอบแล้ว ซึ่งให้บริการแก่ผู้ใช้ 63,204,814 รายในกว่า 6.7 ล้านวิชาและผู้สอนกว่า 1.2 ล้านคน มูเดิลเดิมทีได้พัฒนาโดย Martin Dougiamas มีจุดประสงค์เพื่อช่วยคุณครูหรือผู้ที่ทำงานด้านการศึกษาให้สามารถสร้างบทเรียนออนไลน์ได้ ความสามารถของมูเดิลเน้นไปที่การมีปฏิสัมพันธ์ระหว่างผู้เรียนกับเนื้อหาและการร่วมกันพัฒนาเนื้อหาบทเรียน รุ่นแรกของมูเดิลได้เปิดตัวในวันที่ 20 สิงหาคม พ.ศ. 2545 และปัจจุบันก็ยังคงพัฒนาเรื่อยมา ชื่อมูเดิลได้กลายมาเป็นชื่อของโครงการและบริษัทมากมายที่เกี่ยวข้องกับซอฟต์แวร์มูเดิล
-ซอฟต์แวร์มูเดิล
-Moodle Pty Ltd (หรืออาจเรียกว่า Moodle Headquarters หรือ the Moodle Trust) เป็นบริษัทในเมืองเพิร์ท ประเทศออสเตรเลีย มีส่วนร่วมในการพัฒนาซอฟต์แวร์หลักของมูเดิล
-ชุมชนมูเดิล เป็นเครือข่ายเปิดของผู้ใช้งานมูเดิล มีผู้ใช้ลงทะเบียนกว่าหนึ่งล้านคน ผู้ใช้แต่ละคนอาจแบ่งปันโค้ด แนวคิด หรือข้อมูลต่าง ๆ ภายในชุมชน นอกจากนี้ชุมชนยังมีนักพัฒนาซอฟต์แวร์จำนวนมากที่ไม่ได้ร่วมพัฒนาซอฟต์แวร์หลักของมูเดิลโดยตรง แต่ช่วยในการสร้างโมดูลเสริมความสามารถต่าง ๆ
-Moodle Partner network เป็นกลุ่มที่ช่วยสนับสนุนเงินบริจาคให้แก่ Moodle Pty Ltd

jumbo jili

ในปี ค.ศ. 1868 เจมส์ เคลิร์ก แมกซ์เวลล์ เป็นบุคคลแรก ที่ทำการศึกษาถึงเสถียรภาพของ ลูกเหวี่ยงหนีศูนย์กลางของ เจมส์ วัตต์ โดยใช้แบบจำลองสมการเชิงอนุพันธ์เชิงเส้น ทฤษฎีเสถียรภาพของระบบเชิงเส้นของแมกซ์เวลล์นี้ พิจารณาเสถียรภาพของระบบจาก รากของสมการคุณลักษณะ (characteristic equation) ของระบบ ต่อมาในปี ค.ศ. 1892 เลียปูนอฟได้ทำการศึกษาถึงเสถียรภาพของระบบไม่เป็นเขิงเส้น และสร้างทฤษฎีเสถียรภาพของเลียปูนอฟ (Lyapunov stability) แต่ทฤษฎีของเลียปูนอฟนี้เป็นทฤษฎีที่สำคัญที่ไม่ได้รับความสนใจ จนกระทั่งหลายสิบปีต่อมา ระบบควบคุมแบบดั้งเดิม (อังกฤษ: classical control) หมายถึง ระบบควบคุมที่ออกแบบและวิเคราะห์บนโดเมนความถี่ (หรือโดเมนการแปลงฟูรีเย) และโดเมนการแปลงลาปลาส โดยการใช้แบบจำลองในรูปของ ฟังก์ชันส่งผ่าน (transfer function) โดยไม่ได้ใช้ข้อมูลรายละเอียดของไดนามิกส์ภายในของระบบ (internal system dynamic) พัฒนาการของทฤษฎีระบบควบคุมในช่วงนี้นั้น ส่วนใหญ่พัฒนาขึ้นเพื่อประยุกต์ใช้งานในทางทหารและทางระบบสื่อสาร อันเนื่องมาจากสงครามโลกครั้งที่สอง และ การขยายตัวของโครงข่ายสื่อสารโทรศัพท์ ในช่วงยุคที่มีการขยายตัวของระบบสื่อสารโทรศัพท์นั้น ระบบสื่อสารทางไกลมีความจำเป็นต้องใช้อุปกรณ์ขยายสัญญาณด้วยหลอดสุญญากาศ ในปี ค.ศ. 1927 แนวความคิดและประโยชน์ของระบบป้อนกลับแบบลบ ได้ถูกนำเสนอในรูปของ อุปกรณ์ขยายสัญญาณป้อนกลับแบบลบ (negative feedback amplifier) โดย เอช. เอส. แบล็ก แต่การวิเคราะห์เสถียรภาพของระบบขยายสัญญาณตามทฤษฎีของแมกซ์เวลล์ โดยใช้วิธีของ เราท์-ฮิวรวิทซ์ (Routh-Hurwitz) นั้นเป็นไปได้ยาก เนื่องจากความซับซ้อนของระบบ วิศวกรสื่อสารของ Bell Telephone Laboratories จึงได้นำเสนอการวิเคราะห์บนโดเมนความถี่ โดยในปี ค.ศ. 1932 แฮร์รี่ ไนควิสต์นำเสนอ เกณฑ์เสถียรภาพของไนควิสต์ (Nyquist stability criterion) ซึ่งใช้วิธีการพล็อตกราฟเชิงขั้ว ของผลตอบสนองความถี่ตลอดวงรอบ (loop frequency response) ของระบบ ต่อมาในปี ค.ศ. 1940 เฮนดริค โบดีได้นำเสนอวิธีการวิเคราะห์เสถียรภาพโดยขอบเขตอัตราขยาย (gain margin) และขอบเขตมุม (phase margin) จากกราฟระหว่างขนาดและมุม (phase) ของผลตอบสนองความถี่ เรียกว่า โบดีพล็อต (Bode plot)

สล็อต

พัฒนาการเพื่อการใช้งานทางด้านการทหาร ปัญหาหลายปํญหาในทางหทาร เช่น ปัญหาการนำร่องการเดินเรืออัตโนมัติ ปัญหาการเล็งเป้าโดยอัตโนมัติ นั้นเป็นแรงผลักดันสำคัญให้เกิดการพัฒนาการทางทฤษฎีระบบควบคุมที่สำคัญหลายอย่าง ในปี ค.ศ. 1922 มินอร์สกี (N. Minorsky) ได้กำหนดและวิเคราะห์กฎของ ระบบควบคุมพีไอดี หรือ สัดส่วน-ปริพันธ์-อนุพันธ์ (proportional-integral-derivative) ซึ่งยังเป็นที่นิยมใช้อย่างกว้างขวางในปัจจุบัน เพื่อใช้ในการนำร่องการเดินเรือ ปัญหาที่สำคัญในช่วงนั้นคือ การเล็งเป้าของปืนจากเรือหรือเครื่องบิน ซึ่งในปี ค.ศ. 1934 ฮาเซน (H.L. Házen) ได้บัญญัติคำสำหรับประเภทปัญหาการควบคุมกลไกนี้ว่า กลไกเซอร์โว (servomechanisms) การวิเคราะห์และออกแบบนั้นก็ใช้วิธีการบนโดเมนความถี่ จนกระทั่งในปีค.ศ. 1948 อีแวนส์ (W. R. Evans) ซึ่งทำงานกับปัญหาทางด้านการนำร่องและควบคุมเส้นทางบิน ซึ่งส่วนใหญ่นั้นเป็นระบบที่ไม่เสถียร ได้ประสบกับปํญหาการวิเคราะห์เสถียรภาพบนโดเมนของความถี่ จึงได้หันกลับไปศึกษาถึงรากของสมการคุณลักษณะ ซึ่งเป็นวิธีการวิเคราะห์บนโดเมนการแปลงลาปลาส และได้พัฒนาวิธี ทางเดินราก (root locus) ในการออกแบบระบบ
ระบบควบคุมสมัยใหม่ แบบจำลองทางคณิตศาสตร์ของเพนดูลัมผกผันสามารถประยุกต์ใช้กับระบบควบคุมการทรงตัวของพาหนะอย่าง เซกเวย์ (Segway) ได้ อุปกรณ์ที่ต้องการความแม่นยำและความละเอียดสูงอย่างหัวอ่านข้อมูลของฮาร์ดดิสก์ จำเป็นที่จะต้องมีการออกแบบตัวควบคุมที่มีประสิทธิภาพ ทนทานต่อการรบกวนต่าง ๆ ได้เป็นอย่างดี อาทิเช่น การสั่นสะเทือน, ผลกระทบจากกระแสไฟฟ้าในระบบเกิน เป็นต้น ระบบควบคุมสมัยใหม่ (modern control) หมายถึง ระบบควบคุมที่ไม่ได้ใช้เทคนิคในการออกแบบแบบดั้งเดิม คือ จากรากของสมการคุณลักษณะ และอยู่บนโดเมนความถี่ แต่เป็นการออกแบบ โดยมีพื้นฐานจากแบบจำลองสมการอนุพันธ์ของไดนามิกส์ของระบบ และเป็นการออกแบบอยู่บนโดเมนเวลา แรงผลักดันของพัฒนาการจากระบบควบคุมแบบดั้งเดิม มาสู่ระบบควบคุมสมัยใหม่นี้ มีอยู่หลัก ๆ สองประการคือ

สล็อตออนไลน์

ข้อจำกัดของระบบควบคุมแบบดั้งเดิมต่องานด้านอวกาศยาน : จากความสำเร็จในการส่งดาวเทียมสปุตนิก 1 ของสหภาพโซเวียตในปี ค.ศ. 1957 นั้นกระตุ้นให้เกิดความตื่นตัวของการประยุกต์ใช้งานทางด้านอวกาศยาน ความสำเร็จของโซเวียตนั้นเนื่องมาจากพัฒนาการทางด้านทฤษฎีระบบควบคุมแบบไม่เป็นเชิงเส้น ซึ่งไม่ได้รับความสนใจมากนักจากประเทศตะวันตก เนื่องจากความล้มเหลวในการใช้เทคนิคต่าง ๆ ของระบบควบคุมแบบดั้งเดิม กับงานด้านอวกาศยาน ซึ่งระบบส่วนใหญ่นั้น เป็นระบบหลายตัวแปรแบบไม่เป็นเชิงเส้น (nonlinear multivariable system) จึงมีการหันกลับมาพิจารณาการวิเคราะห์จากปัญหาดั้งเดิม ในรูปของแบบจำลองสมการอนุพันธ์ของระบบ การประยุกต์ใช้คอมพิวเตอร์กับงานระบบควบคุม พัฒนาการของคอมพิวเตอร์ มีส่วนสำคัญในการพัฒนาทฤษฎีต่าง ๆ ของระบบควบคุม เนื่องจากทำให้สามารถสร้างอุปกรณ์ควบคุมที่สามารถทำงานซับซ้อนได้ รวมทั้งการใช้คอมพิวเตอร์ช่วยคำนวณในการออกแบบกฎของการควบคุม ดังนั้นจึงมีการพัฒนาระบบควบคุมแบบต่าง ๆ ขึ้นอย่างมากมาย ด้วยเหตุดังกล่าว จึงมีการพัฒนาทฤษฎีระบบควบคุม จากหลายแง่มุม จากความพยายามในการใช้คอมพิวเตอร์ซึ่งเป็นดิจิทัล เพื่อการควบคุมระบบซึ่งโดยส่วนใหญ่จะเป็นระบบอนาล็อก จึงส่งผลให้มีการพัฒนาทางทฤษฎีระบบควบคุมดิจิทัล ( digital control) โดยในปี ค.ศ. 1952 จอห์น รากัซซินี (J.R. Ragazzini) , แฟรงคลิน (G Franklin) และ ซาเดห์ (L.A. Zadeh ผู้คิดค้นฟัซซี่ลอจิก) ที่มหาวิทยาลัยโคลัมเบีย ได้พัฒนาทฤษฎีระบบแบบชักข้อมูล (sampled data systems) ขึ้น การใช้คอมพิวเตอร์ในการควบคุมกระบวนการในอุตสาหกรรมนั้น ครั้งแรกในปี ค.ศ. 1959 ที่ โรงกลั่นน้ำมัน พอร์ต อาเธอร์ (Port Arthur) ในรัฐเท็กซัส

jumboslot

นอกจากนั้นแล้วแนวความคิดของการควบคุมที่ซับซ้อนขึ้นโดยมีการรวม ข้อกำหนดความต้องการทางด้านประสิทธิภาพ (performance) ในการออกแบบระบบควบคุม ซึ่งเรียกว่า ระบบควบคุมแบบเหมาะสมที่สุด (optimal control) รากฐานของทฤษฎีระบบควบคุมแบบเหมาะสมที่สุดนี้มีมายาวนานตั้งแต่ปี ค.ศ. 1696 จาก หลักของความเหมาะสมที่สุด (principle of optimality) ในปัญหา บราคิสโตโครน (Brachistochrone curve) และ แคลคูลัสของการแปรผัน (Calculus of variations) ในปีค.ศ. 1957 ริชาร์ด เบลแมน ได้ประยุกต์ใช้วิธีการกำหนดการพลวัตของเขาในการแก้ปัญหาระบบควบคุมแบบเหมาะสมที่สุด แบบเวลาไม่ต่อเนื่อง ต่อมาในปีค.ศ. 1958 พอนเทรียกิน (L.S. Pontryagin) ได้พัฒนา หลักการมากที่สุด (maximum principle หรือบางครั้งก็เรียก minimum principle) สำหรับแก้ปัญหาในรูปของแคลคูลัสของการแปรผัน แบบเวลาต่อเนื่อง ตัวกรองคาลมานนำร่อง ลูนาร์โมดูล ของ อพอลโล่ 11 สู่พื้นผิวดวงจันทร์ การสังเกตถึงผลกระทบของสัญญาณรบกวนต่อประสิทธิภาพของระบบควบคุมนั้นมีมาตั้งแต่ในช่วงระบบควบคุมยุคดั้งเดิม เช่นในช่วงสงครามโลกครั้งที่สอง ในการพัฒนาระบบควบคุมสำหรับเรดาร์ติดเครื่องบิน เพื่อควบคุมการยิง ที่ ห้องทดลองเรดิเอชัน (Radiation Lab) ที่ เอ็มไอที, ฮอลล์ (A.C. Hall) ได้ประสบปัญหาในการออกแบบ เขาได้สังเกตถึงผลกระทบจากการออกแบบที่ไม่ได้คำนึงถึงสัญญาณรบกวนต่อประสิทธิภาพของระบบ ถึงแม้ว่าจะมีการคำนึงถึงผลกระทบของสัญญาณรบกวน แต่ก็ไม่ได้มีการใช้แบบจำลองทางคณิตศาสตร์ของสัญญาณรบกวนในการวิเคราะห์แต่อย่างใด จนกระทั่ง นอร์เบิร์ต วีนเนอร์ ได้จำลองสัญญาณรบกวน โดยใช้แบบจำลองกระบวนการสตอแคสติก หรือ แบบจำลองทางสถิติ แบบเวลาต่อเนื่อง ในการพัฒนาระบบเล็งเป้าและควบคุมการยิงปืนต่อต้านอากาศยาน โดยใช้ข้อมูลจากเรดาร์ ซึ่งงานของเขาได้ถูกเก็บเป็นความลับ จนถึงปี ค.ศ. 1949 ในช่วงเดียวกันในปี ค.ศ. 1941 คอลโมโกรอฟ ก็ได้ทำการพัฒนาแบบจำลองสำหรับระบบเวลาไม่ต่อเนื่องขึ้น ระบบควบคุมที่ใช้แบบจำลองสคอแคสติกนี้ในการวิเคราะห์ จะเรียกว่า ระบบควบคุมสตอแคสติก (Stochastic control) การวิเคราะห์และควบคุมระบบบนโดเมนเวลา โดยใช้แบบจำลองตัวแปรสถานะ หรือ แบบจำลองปริภูมิสถานะ (state space) นั้นเป็นหัวใจของทฤษฎีระบบควบคุมสมัยใหม่ รูดอล์ฟ อีมิว คาลมาน และ Bellman นั้นถือได้ว่าเป็นบุคคลที่มีส่วนสำคัญในการพัฒนาทฤษฎีระบบควบคุมโดยใช้แบบจำลองตัวแปรสถานะนี้ โดยที่ในปี ค.ศ. 1960 คาลมานได้นำทฤษฎีเสถียรภาพของเลียปูนอฟมาใช้ในการออกแบบระบบ ซึ่งเป็นผลให้ผลงานของเลียปูนอฟกลับมาได้รับความสนใจ นอกจากนี้แนวทางใหม่นี้ยังสามารถตอบคำถามเกี่ยวกับลักษณะเฉพาะของตัวระบบได้ ได้แก่ สภาพควบคุมได้ (controllability) สภาพสังเกตได้ (observability) ผลสัมฤทธิ์เล็กสุดเฉพาะกลุ่ม (minimal realization) และยังนำไปสู่การออกแบบตัวควบคุมแบบใหม่ เช่น การวางขั้ว (pole placement) ตัวควบคุมอิงตัวสังเกต (observer-based controller) และตัวควบคุมกำลังสองเชิงเส้นเหมาะที่สุด (optimal linear quadratic regulator) คาลมานได้พัฒนาวิธีการออกแบบระบบควบคุมแบบเหมาะสมที่สุด จากแบบจำลองปริภูมิสถานะ ในรูปของปัญหาระบบเชิงเส้นคงค่าแบบเหมาะสมที่สุดตามสมการกำลังสอง หรือ LQR (linear quadratic regulator) ในปีเดียวกันนี้ คาลมานได้นำเสนอผลงานของเขาในการประยุกต์ใช้แบบจำลองตัวแปรสถานะนี้เข้ากับแนวความคิดทางด้านสตอแคสติกของวีนเนอร์ และคิดค้นสิ่งที่เรารู้จักกันในชื่อ ตัวกรองคาลมาน (Kalman filter) ขึ้นมา โดยการใช้งานจริงครั้งแรกของตัวกรองคาลมาน นั้นได้ถูกประยุกต์เป็นส่วนหนึ่งของระบบนำร่องในโครงการอพอลโล ตั้งแต่นั้นมาตัวกรองคาลมานก็ได้ถูกประยุกต์ใช้งานอย่างกว้างขวางในปัจจุบัน

slot